منابع مشابه
Induced Graphoidal Covers in a Graph
An induced graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ, every edge of G is in exactly one path in ψ and every member of ψ is an induced cycle or an induced path. The minimum cardinality of an induced graphoidal cover of G is called the in...
متن کاملInduced Acyclic Graphoidal Covers in a Graph
An induced acyclic graphoidal cover of a graph G is a collection ψ of open paths in G such that every path in ψ has atleast two vertices, every vertex of G is an internal vertex of at most one path in ψ, every edge of G is in exactly one path in ψ and every member of ψ is an induced path. The minimum cardinality of an induced acyclic graphoidal cover of G is called the induced acyclic graphoida...
متن کاملOn Graphoidal Covers of Bicyclic Graphs
A graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of G and is denoted by η(G) or η. Also, If every me...
متن کاملThe convex domination subdivision number of a graph
Let $G=(V,E)$ be a simple graph. A set $Dsubseteq V$ is adominating set of $G$ if every vertex in $Vsetminus D$ has atleast one neighbor in $D$. The distance $d_G(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$G$. An $(u,v)$-path of length $d_G(u,v)$ is called an$(u,v)$-geodesic. A set $Xsubseteq V$ is convex in $G$ ifvertices from all $(a, b)$-geodesics belon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1999
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(98)00389-6